skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Alameddine, JM"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Active galactic nuclei (AGN) are promising candidate sources of high-energy astrophysical neutrinos, since they provide environments rich in matter and photon targets where cosmic-ray interactions may lead to the production of gamma rays and neutrinos. We searched for high-energy neutrino emission from AGN using the Swift-BAT Spectroscopic Survey catalog of hard X-ray sources and 12 yr of IceCube muon track data. First, upon performing a stacked search, no significant emission was found. Second, we searched for neutrinos from a list of 43 candidate sources and found an excess from the direction of two sources, the Seyfert galaxies NGC 1068 and NGC 4151. We observed NGC 1068 at flux ϕ ν μ + ν ¯ μ = 4.0 2 1.52 + 1.58 × 1 0 11 TeV−1cm−2s−1normalized at 1 TeV, with a power-law spectral indexγ= 3.10 0.22 + 0.26 , consistent with previous IceCube results. The observation of a neutrino excess from the direction of NGC 4151 is at a posttrial significance of 2.9σ. If interpreted as an astrophysical signal, the excess observed from NGC 4151 corresponds to a flux ϕ ν μ + ν ¯ μ = 1.5 1 0.81 + 0.99 × 1 0 11 TeV−1cm−2s−1normalized at 1 TeV andγ= 2.83 0.28 + 0.35
    more » « less
    Free, publicly-accessible full text available March 4, 2026
  2. Abstract We report a search for high-energy astrophysical neutrino multiplets, detections of multiple neutrino clusters in the same direction within 30 days, based on an analysis of 11.4 yr of IceCube data. A new search method optimized for transient neutrino emission with a monthly timescale is employed, providing a higher sensitivity to neutrino fluxes. This result is sensitive to neutrino transient emission, reaching per-flavor flux of approximately 1 0 10 erg cm 2 s 1 from the Northern Sky in the energy rangeE ≳ 50 TeV. The number of doublets and triplets identified in this search is compatible with the atmospheric background hypothesis, which leads us to set limits on the nature of neutrino transient sources with emission timescales of one month. 
    more » « less
    Free, publicly-accessible full text available March 10, 2026
  3. Abstract While the sources of the diffuse astrophysical neutrino flux detected by the IceCube Neutrino Observatory are still largely unknown, one of the promising methods to improve our understanding of them is investigating the potential temporal and spatial correlations between neutrino alerts and the electromagnetic radiation from blazars. We report on the multiwavelength target-of-opportunity observations of the blazar B3 2247+381, taken in response to an IceCube multiplet alert for a cluster of muon neutrino events compatible with the source location between 2022 May 20 and 2022 November 10. B3 2247+381 was not detected with VERITAS during this time period. The source was found to be in a low-flux state in the optical, ultraviolet, and gamma-ray bands for the time interval corresponding to the neutrino event, but was detected in the hard X-ray band with NuSTAR during this period. We find the multiwavelength spectral energy distribution is described well using a simple one-zone leptonic synchrotron self-Compton radiation model. Moreover, assuming the neutrinos originate from hadronic processes within the jet, the neutrino flux would be accompanied by a photon flux from the cascade emission, and the integrated photon flux required in such a case would significantly exceed the total multiwavelength fluxes and the VERITAS upper limits presented here. The lack of flaring activity observed with VERITAS, combined with the low multiwavelength flux levels, as well as the significance of the neutrino excess being at a 3σlevel (uncorrected for trials), makes B3 2247+381 an unlikely source of the IceCube multiplet. We conclude that the neutrino excess is likely a background fluctuation. 
    more » « less
    Free, publicly-accessible full text available March 20, 2026
  4. Abstract The IceCube Neutrino Observatory relies on an array of photomultiplier tubes to detect Cherenkov light produced by charged particles in the South Pole ice. IceCube data analyses depend on an in-depth characterization of the glacial ice, and on novel approaches in event reconstruction that utilize fast approximations of photoelectron yields. Here, a more accurate model is derived for event reconstruction that better captures our current knowledge of ice optical properties. When evaluated on a Monte Carlo simulation set, the median angular resolution for in-ice particle showers improves by over a factor of three compared to a reconstruction based on a simplified model of the ice. The most substantial improvement is obtained when including effects of birefringence due to the polycrystalline structure of the ice. When evaluated on data classified as particle showers in the high-energy starting events sample, a significantly improved description of the events is observed. 
    more » « less
  5. IceCube_Collaboration (Ed.)
    Abstract More than 10000 photomultiplier tubes (PMTs) with a diameter of 80 mm will be installed in multi-PMT Digital Optical Modules (mDOMs) of the IceCube Upgrade. These have been tested and pre-calibrated at two sites. A throughput of more than 1000 PMTs per week with both sites was achieved with a modular design of the testing facilities and highly automated testing procedures. The testing facilities can easily be adapted to other PMTs, such that they can, e.g., be re-used for testing the PMTs for IceCube-Gen2. Single photoelectron response, high voltage dependence, time resolution, prepulse, late pulse, afterpulse probabilities, and dark rates were measured for each PMT. We describe the design of the testing facilities, the testing procedures, and the results of the acceptance tests. 
    more » « less
  6. Abstract In this work, we present the results of searches for signatures of dark matter decay or annihilation into Standard Model particles, and secret neutrino interactions with dark matter.Neutrinos could be produced in the decay or annihilation of galactic or extragalactic dark matter.Additionally, if an interaction between dark matter and neutrinos exists then dark matter will interact with extragalactic neutrinos.In particular galactic dark matter will induce an anisotropy in the neutrino sky if this interaction is present.We use seven and a half years of the High-Energy Starting Event (HESE) sample data, which measures neutrinos in the energy range of approximately 60 TeV to 10 PeV, to study these phenomena.This all-sky event selection is dominated by extragalactic neutrinos.For dark matter of ∼ 1 PeV in mass, we constrain the velocity-averaged annihilation cross section to be smaller than 10-23cm3/s for the exclusiveμ+μ-channel and 10-22cm3/s for the bb̅ channel.For the same mass, we constrain the lifetime of dark matter to be larger than 1028s for all channels studied, except for decaying exclusively to bb̅ where it is bounded to be larger than 1027s.Finally, we also search for evidence of astrophysical neutrinos scattering on galactic dark matter in two scenarios.For fermionic dark matter with a vector mediator, we constrain the dimensionless coupling associated with this interaction to be less than 0.1 for dark matter mass of 0.1 GeV and a mediator mass of 10-4GeV.In the case of scalar dark matter with a fermionic mediator, we constrain the coupling to be less than 0.1 for dark matter and mediator masses below 1 MeV. 
    more » « less